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Microscopic theory of Brownian motion of a particle of mass M in a bath of molecules of mass m�M is
considered beyond lowest order in the mass ratio m /M. The corresponding Langevin equation contains non-
linear corrections to the dissipative force, and the generalized Fokker-Planck equation involves derivatives of
order higher than 2. These equations are derived from first principles with coefficients expressed in terms of
correlation functions of microscopic force on the particle. The coefficients are evaluated explicitly for a
generalized Rayleigh model with a finite time of molecule-particle collisions. In the limit of a low-density bath,
we recover the results obtained previously for a model with instantaneous binary collisions. In the general case,
the equations contain additional corrections, quadratic in bath density, originating from a finite collision time.
These corrections survive to order �m /M�2 and are found to make the stationary distribution non-Maxwellian.
Some relevant numerical simulations are also presented.
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I. INTRODUCTION

This paper is concerned with the derivation and some
properties of the generalized Fokker-Planck equation �FPE�
for the distribution function f�p , t� of a single stochastic vari-
able p, which differs from the conventional FPE by involv-
ing p-derivatives of order higher than 2,

� f�p,t�
�t

= �
n=1

k�2
�n

�pncn�p�f�p,t� . �1�

Such an equation may appear as a result of a high-order
truncation of the Kramers-Moyal expansion of the Markov-
ian master equation �1�,

� f�p,t�
�t

=� dp��f�p�,t�w�p� → p� − f�p,t�w�p → p���

= �
n=1

�
1

n!
	−

�

�p

n

��n�p�f�p,t�� . �2�

In general, the naive truncation of this expansion is not a
legitimate procedure, but if a problem at hand involves a
small parameter �, one can approximate the expansion by a
finite number of terms using an appropriate perturbation
technique �2�. In the case of Brownian motion of a heavy
particle of mass M in a thermal bath of light molecules of
mass m and temperature T, the appropriate small parameter
is the mass ratio �2=m /M. In this case, to order �2 one
recovers for the particle’s momentum p the conventional
second-order FPE,

� f�p,t�
�t

= �a1
�

�p
p + a2

�2

�p2� f�p,t� , �3�

while going beyond order �2 leads to an equation of the form
�1�.

In rare cases when transition rates w in the master equa-
tion �2� are known explicitly, the derivation of the general-
ized FPE �1� is fairly straightforward �2–5�, otherwise it is
difficult. A popular approach engages the assumption that the
fluctuating force in the corresponding Langevin equation is a

Gaussian process. In this case, perturbation analysis is not
needed since the terms with derivatives of order higher than
2 vanish identically and one arrives at the conventional FPE
�3�, which in this case is exact. However, the assumption of
Gaussian random force, although it might seem physically
reasonable, should not be taken for granted. In particular, for
a Brownian particle it is justified only to order �2, while
corrections of higher orders are essentially non-Gaussian and
lead to a FPE in the generalized form �1�. This paper is
focused on the generalized FPE for the Brownian particle’s
momentum p to order �4, which involves p derivatives up to
order 4.

Despite a few important contributions �see below�, the
theory of Brownian motion beyond the lowest approximation
did not attract much attention in the past, perhaps because of
the common belief that higher-order corrections are of little
importance. However, in recent years the problem has at-
tracted some new interest. Beyond lowest order in �, the
Langevin equation for a Brownian particle involves nonlin-
ear dissipative terms, and thus corresponds to the description
beyond the level of linear-response theory. One might hope
that the nonlinear Langevin equation and the corresponding
generalized FPE would be able to capture the subtle effects
of the interplay of noise and nonlinearity, which are com-
pletely washed out when one uses the conventional FPE or
the corresponding linear Langevin equation. This indeed has
been demonstrated for a number of problems including
Brownian motors �6–9� and barrier crossing �10�.

The main difficulty related to the generalized FPE and the
corresponding nonlinear Langevin equation is that these
equations usually cannot be constructed on a purely phenom-
enological basis. There is a substantial mathematical litera-
ture on the Langevin equation with nonlinear dissipation
terms. However, for processes with nonlinear dissipation,
thermodynamics provides no hints about the form of
fluctuation-dissipation relations, and little progress can be
made without such relations. Furthermore, an attempt to go
beyond the comfortable but artificial assumption of a Gauss-
ian random force leaves one, within a phenomenological
framework, with no clue as to how to handle correlations
higher than second order.
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These difficulties suggest to derive the generalized FPE
from as close to first principles as possible. A successful
example of such a derivation is van Kampen’s method of
system size expansion �2�, and in particular its application
for the Rayleigh model of Brownian motion �3–5�. In this
model, a Brownian particle of mass M moves in one dimen-
sion interacting with the heat bath of ideal gas molecules of
mass m�M and temperature T through instantaneous binary
collisions. As was mentioned above, the relevant small pa-
rameter is the mass ratio �2=m /M. Since the momentum of
the particle P is on average �−1 times larger than that of a
bath molecule, it is convenient to work with the scaled par-
ticles momentum p=�P, which is of the same order as the
thermal momentum of molecules of the bath pT=
mkBT. The
Rayleigh model is truly Markovian, and the natural starting
point is the master equation �2� for the distribution function
f�p , t�, in which transition rates can be readily found explic-
itly under the assumption of binary particle-molecule colli-
sions. Transforming the Kramers-Moyal expansion into the
expansion in powers of �, one derives to order �2 the con-
ventional FPE

� f�p,t�
�t

= �2D2f�p,t� , �4�

where D2 is a second-order differential operator,

D2 = �0� �

�p
p + pT

2 �2

�p2�, �0 =
8�


2	

pT

m
, �5�

� is the number of bath molecules per unit length, pT

=
m /
 is the molecule’s thermal momentum, and 
 is the
inverse temperature 
=1 /kBT. An extension to order �4

leads to the generalized FPE in the form

� f�p,t�
�t

= ��2D2 + �4D4�f�p,t� , �6�

where the operator D4 involves derivatives up to order 4,

D4 = �0�−
�

�p
p +

1

6pT
2

�

�p
p3 − 2pT

2 �2

�p2 +
3

2

�2

�p2 p2 +
8pT

2

3

�3

�p3 p

+
4pT

4

3

�4

�p4� . �7�

Note that terms of order �3 vanish due to symmetry. In what
follows, I will refer to Eq. �6�, first obtained in �3�, as the van
Kampen equation.

One can verify that the Maxwellian distribution fM�p�
=C exp�−
p2 /2m� is the stationary solution for both the
standard FPE �4� and the van Kampen equation �6�,

D2fM�p� = D4fM�p� = 0. �8�

However, in contrast to the conventional FPE �4�, the van
Kampen equation �6� does not preserve the positivity of the
solution and therefore cannot be an exact equation for any
stochastic process. Yet, as an approximation beyond lowest
order in �, Eq. �6� is useful and predicts a number of quali-
tatively new features. For instance, while the conventional
FPE �4� gives for the average momentum �p�t��=�dpf�p , t�p

the closed equation �ṗ�=−�2�0�p�, the van Kampen equation
�6� predicts the coupling to the third moment �p3�,

d

dt
�p� = − �2�0�1 − �2��p� −

1

6
�4�0pT

−2�p3� . �9�

For initial conditions �p�0��=0 and �p3�0���0, the FPE �4�
gives �p�t��=0 for any t�0, while Eq. �9� gives nonzero
average momentum for a time interval t��0

−1. This predic-
tion was discussed and confirmed by numerical simulation in
�9�. The van Kampen equation �6� was recently exploited in
the context of rectification of thermal fluctuations �7� and to
study the influence of nonlinear dissipation on the Kramers
escape rate �10�.

Although proven to be useful, the van Kampen equation
�6� is by no means general. It is derived under assumptions
similar to those for the Boltzmann equation, namely that a
characteristic collision time �c is much shorter than all other
relevant time scales �which implies small ��, and that mul-
tiple collisions are negligible �small bath’s density�. It is of
interest to derive a generalized FPE from first principles
keeping the former assumption, but relaxing the latter. Some
aspects of this problem were addressed already in pioneering
works on the microscopic theory of Brownian motion �11�
and further developed in �12–14�. Perhaps the most elaborate
work is the paper by van Kampen and Oppenheim �15�. They
applied the projection operator technique directly to the
Liouville equation for the total particle-bath distribution
function and derived a generalized FPE of order �4. The
coefficients in the equation are expressed in terms of rather
complicated correlation functions, and no attempt has been
made to compare the result with the van Kampen equation
�6�.

It was noted by Seke �16� that the projection operator
method, when applied to the Liouville equation, involves
some subtlety and may be inconsistent. The alternative way,
which we shall follow in this paper, is to apply the projector
operator technique directly to the equation of motion of the
particle, to derive microscopically the Langevin equation for
the particle’s momentum p, and then to apply a standard
routine �1� to construct a corresponding FPE for the distri-
bution function f�p , t�.

It is generally believed that the two methods of derivation,
namely “Liouville→Fokker-Planck” and “Equation of
motion→Langevin→Fokker-Planck,” should give the same
result. To lowest order, �2, it is indeed the case: both meth-
ods lead to the standard second-order FPE �3�. However, we
have found recently �17� that beyond the lowest order, the
predictions of the two methods are different. Moreover, it
was found that the second method �from Langevin to
Fokker-Planck� leads to a generalized FPE with a rather dis-
turbing property, namely its stationary solution was found to
be non-Maxwellian. The intention of this paper is to follow
this line in detail to obtain a generalized FPE to order �4 in a
complete form. The equation we arrive at, namely Eq. �70� in
Sec. V, involves terms linear and quadratic in the density of
bath molecules n. For a very diluted bath the latter can be
neglected, and the equation is reduced to the van Kampen
equation �6�, as expected. The results related to the terms
quadratic in n are controversial. These terms are absent in the
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van Kampen equation for a binary collisions model, have a
structure different from that in the van Kampen–Oppenheim
approach, and make the stationary solution inconsistent with
Boltzmann-Gibbs statistics. Whether these results provide a
consistent proof of weak non-ergodicity of Brownian motion
or are merely an indication that a naive perturbation scheme
does not apply beyond the Markovian approximation re-
mains an open question. As will be discussed, a direct unam-
biguous verification of nonergodic effects by numerical
simulation may be a nontrivial task.

The possibility of deviations from the Maxwellian distri-
bution has long been discussed in the literature. It is known
that even small deviations may be important for thermally
activated processes, in particular for thermonuclear reaction
rates in astrophysical plasma �18�. Several mechanisms were
proposed to justify such deviations, but in our opinion none
of them is quite satisfactory. For instance, introducing a non-
linear dissipating term into the Langevin equation and as-
suming that the fluctuating force is Gaussian, one generally
arrives at a second-order FPE with a non-Maxwellian sta-
tionary solution �19�. However, as we already noted, nonlin-
ear corrections to the dissipation force for a Brownian par-
ticle are of order higher than �2. In this case, an accurate
perturbation procedure leads to a generalized FPE of order
higher than 2, which is a clear indication that the assumption
of Gaussian random force is not justified beyond the lowest
order.

The plan of the paper is as follows. In Secs. II and III, the
Mazur-Oppenheim version of the projection operator tech-
nique is applied to derive the nonlinear Langevin equation of
order �4. In this part we mostly follow the previous paper
�20�, making some small yet important corrections. The cor-
responding generalized FPE is constructed in Sec. IV and
analyzed in Sec. V. In Sec. VI, we present the results for the
generalized Rayleigh model, which allows analytical evalu-
ation of all relevant correlation functions. Also, in this sec-
tion the results of numerical simulation are discussed. Sum-
marizing remarks are collected in Sec. VII.

II. NON-MARKOVIAN LANGEVIN EQUATION

Consider a structureless Brownian particle of mass M im-
mersed in a thermal bath comprised of molecules of mass m.
It is assumed that the mass ratio �2=m /M is small and that
the bath is initially in equilibrium at temperature T. The aim
of this and the next sections is to derive the Langevin equa-
tion for the particle to order �4. As will be shown, such an
equation involves a nonlinear correction to the damping
term, which is cubic in the particle’s momentum.

The Hamiltonian of the system is

H =
P2

2M
+ H0, �10�

H0 = �
i

pi
2

2m
+ U�x,X� . �11�

Here x= �xi� and pi are positions and momenta of bath mol-
ecules, X and P are those of the Brownian particle, H0 is the

Hamiltonian of the bath in the field of the Brownian particle
fixed at X, and the potential U describes the intermolecular
interaction and the interaction between molecules and the
particle. To simplify notations, we shall consider a one-
dimensional problem. The coupling of the particle with hy-
drodynamic modes of the bath will be neglected, in which
case the extension to higher dimensions is simple.

As was already noted, it is convenient to work with the
scaled momentum of the particle p=�P, since this quantity
on average is expected to be of the same order as the typical
momentum of a bath molecule pT=
mkBT=
m /
. Writing
the Liouville operator L in terms of p has the advantage of
extracting the small parameter � explicitly,

L = L0 + �L1, �12�

L0 = �
i
� pi

m

�

�xi
+ Fi

�

�pi
� , �13�

L1 =
p

m

�

�X
+ F

�

�p
. �14�

Here Fi=−�U /�xi and F=−�U /�X are the forces on the ith
bath molecule and on the Brownian particle, respectively.

The operator L0 corresponds to the Hamiltonian H0 and
governs dynamics of the bath in the field of the Brownian
particle, which is fixed at X. Since M �m, one might expect
that the force F�t�=eLtF�0� exerted by the bath on the par-
ticle is close to the force on a fixed particle �pressure�,

F�t� � F0�t� � eL0tF�0� . �15�

This intuition is implemented in the Mazur-Oppenheim ap-
proach �21� using the projection operator P, which averages
a dynamical variable A over the canonical distribution 

=Z−1 exp�−
H0�, for bath variables at t=0,

PA = �A� � � 
A�
i

dxidpi. �16�

The idea is to decompose the total force F�t� on the particle
into zero centered fluctuating �“random”� and regular �“dis-
sipative”� parts. Using the operator identity

e�A+B�t = eAt + �
0

t

d�eA�t−��Be�A+B��, �17�

with A=L and B=−PL, one may decompose the force
F�t�=eLtF�0� as follows:

F�t� = F†�t� + �
0

t

d�eL�t−��PLF†��� , �18�

where F†�t�=eQLtF and Q=1−P. The factor PLF†��� in the
integral in Eq. �18� can be simplified taking into account the
orthogonality of P and L0 �PL0=0�, and the equality
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� �

�X
F†�t�� = − 
�F�0�F†�t�� , �19�

which can be verified by integration by parts. As a result, one
can write the equation of motion for the scaled momentum
ṗ�t�=�F�t� in the form �21�

dp�t�
dt

= �2�
0

t

d�eL�t−��	 �

�p
−




m
p
�F�0�F†���� + �F†�t� ,

�20�

where F†�t� is a fluctuating force obeying
�F†�t��=PeQLtF�0�=0.

Equation �20� is exact but hardly instructive. To get some
progress, one needs to expand the fluctuating force F†�t�
=e�L0+�QL1�tF in powers of �,

F†�t� = F0�t� + �F1�t� + �2F2�t� + O��3� . �21�

Using the identity �17�, one obtains

F0�t� = eL0tF�0� ,

F1�t� = �
0

t

dt1eL0�t−t1�QL1F0�t1� ,

F2�t� = �
0

t

dt1eL0�t−t1�QL1�
0

t1

dt2eL0�t1−t2�QL1F0�t2� .

�22�

In contrast to the pressure F0�t�, the higher-order corrections
F1�t� and F2�t� depend on the particle’s momentum p. Seek-
ing an equation for p�t�, one needs to extract this dependence
explicitly,

F1�t� =
p

m
�

0

t

dt��G1�t,t�� − �G1�t,t���� ,

F2�t� = 	 p

m

2�

0

t

dt��
0

t�
dt��G2�t,t�,t�� − �G2�t,t�,t����

+
1

m
�

0

t

dt��
0

t�
dt�G0�t − t���G1�t,t�� − �G1�t,t���� .

�23�

Here the functions Gi are defined as follows:

G0�t� = F0�t� ,

G1�t,t1� = S�t − t1�F0�t1� ,

G2�t,t1,t2� = S�t − t1�S�t1 − t2�F0�t2� , �24�

and the operator S is

S�ti − tk� = eL0�ti−tk� �

�X
. �25�

The functions Gi do not depend on the particle momentum p
and, as we shall see, all coefficients in the �4-order general-

ized FPE can be expressed in terms of correlation functions
of G0, G1, and G2.

Let us now return to the exact equation of motion Eq. �20�
and expand the correlation �F�0�F†�t�� to order �2,

�F�0�F†�t�� = �F�0�F0�t�� + �2�F�0�F2�t�� . �26�

Note that �F�0�F1�t��=0 due to symmetry. Using Eq. �23�,
one can write the above equation in the following form:

�F�0�F†�t�� = C0�t� + �2�	 p

m

2

C1�t� +
1

m
C2�t�� , �27�

where

C0�t� = ��G0�0�G0�t��� ,

C1�t� = �
0

t

dt��
0

t�
dt���G0�0�G2�t,t�,t���� ,

C2�t� = �
0

t

dt��
0

t�
dt���G0�0�G0�t − t��G1�t,t���� . �28�

In the above equations, cumulants ��A1A2¯Ak�� are de-
fined in a usual way, i.e., as a part of the correlation
�A1A2¯Ak� which cannot be reduced to the product of cor-
relations of lower order. We shall need correlations and cu-
mulants up to order 4, which are related to each other as
follows:

�A� = ��A�� ,

�A1A2� = �A1��A2� + ��A1A2�� ,

�A1A2A3� = �A1��A2��A3� + �A1���A2A3�� + �A2���A3A1��

+ �A3���A2A1�� + ��A1A2A3�� ,

�A1A2A3A4� = �A1��A2��A3��A4� + �A1���A2A3A4��

+ �A2���A1A3A4�� + �A3���A1A2A4��

+ �A4���A1A2A3�� + ��A1A2����A3A4��

+ ��A1A3����A2A4�� + ��A1A4����A2A3��

+ ��A1A2A3A4�� . �29�

The important property of cumulants of functions Gi is that
they are linear in the concentration of bath molecules n,

��GiGj ¯ Gk�� � n . �30�

This may be demonstrated noticing that Gi is a linear func-
tional of cumulants for the density of bath particles N�z , t�
=�i�(z−zi�t�), where zi denotes the coordinate-momentum
pair �xi , pi� of a bath particle. In turn, one can observe that
cumulants ��N�z1 , t1�N�z2 , t2�¯N�zk , tk��� of any order k de-
pend linearly on the concentration of bath molecules n. For
instance, in the expression for the product N�z1 , t1�N�z2 , t2�
one can write the double sum as �i,j =�i�j +�i=j, which gives
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�N�z1,t1�N�z2,t2�� = �N�z1,t1���N�z2,t2��

+ �
i

��„z1 − zi�t1�…�„z2 − zi�t2�…� .

�31�

Here the second term on the right side is by definition the
cumulant ��N�z1 , t1�N�z2 , t2��� and is obviously linear in n.

Substituting the expansion �27� into the equation of mo-
tion �20�, one arrives at a nonlinear and non-Markovian
Langevin equation of order �4,

dp�t�
dt

= − �2�
0

t

d�M1���p�t − �� − �4�
0

t

d�M2���p3�t − ��

+ �F�t� . �32�

Here the memory kernels are

M1�t� =



m
C0�t� − �2 2

m2C1�t� + �2 


m2C2�t� ,

M2�t� =



m3C1�t� , �33�

and the fluctuating force �F�t� involves three components,

F�t� = F0�t� + �F1�t� + �2F2�t� , �34�

where F0�t� is the fluctuating pressure, and F1�t� and F2�t�
are defined by Eqs. �23�. The zero-mean term �3F3�t� is dis-
carded because to order �4 it does not contribute to correla-
tions of the fluctuating force �F�t�.

III. MARKOVIAN LANGEVIN EQUATION

The relative importance of memory effects described by
the non-Markovian Langevin equation �32� depends on how
fast the particle’s momentum p�t� evolves on the time scale
�c for the decay of the memory kernels M1�t� and M2�t�. In
what follows, we shall assume that the characteristic time �c
does exist. This assumption is not satisfied, for example, for
Rubin’s model �a heavy impurity embedded in the harmonic
chain�, where M2�t� is identically zero and M1�t� decays with
time as a power law. It is known, however, that in many
cases long-tail effects are indeed negligible for sufficiently
small �, although the justification may require rather subtle
argument �14,22�.

The memory kernels Mi�t� are expressed in terms of cor-
relation functions Ci�t�, which do not depend on �. Then the
characteristic decay time of the kernels does not depend on �
either, �c��0. On the other hand, as follows from Eq. �32�,
the characteristic time for relaxation of the particle’s momen-
tum �p is of order �−2 and thus expected to be much longer
than �c. This suggests that the non-Markovian equation �32�
can be expanded in powers of � about its Markovian limit.

One way to make such an expansion is to use in Eq. �32�
the following substitution �21�:

pn�t − �� = pn�t� − �
t−�

t

dt�
d

dt�
pn�t�� . �35�

The main contributions to the integrals in Eq. �32� come
from the region ���c��0. For such �, the integral term on
the right-hand side of Eq. �35� is of order ṗ��. Then the
nonlinear dissipative term in the Langevin equation �32� can
be written in the local form

− �4�
0

t

d�M2���p3�t − �� = − �4p3�t��
0

t

d�M2��� + O��5� .

�36�

To order �4, this justifies the Markovian ansatz for the non-
linear dissipative term,

− �4�
0

t

d�M2���p3�t − �� → − �4p3�t��
0

�

d�M2��� .

�37�

Here the upper integration limit on the right-hand side is
taken to infinity since we restrict ourselves to the coarse-
grain description on the time scale much longer than the
characteristic time for bath fluctuations, t��c.

The same argument for the linear dissipative term gives

− �2�
0

t

d�M1���p�t − �� = − �2p�t��
0

t

d�M0��� + O��3� .

�38�

In contrast to the nonlinear dissipation term, the Markovian
approximation

− �2�
0

t

d�M1���p�t − �� → − �2p�t��
0

�

d�M0��� �39�

can be applied for the linear dissipative force only in lowest
order �2, in which case one recovers the conventional linear
Langevin equation

dp�t�
dt

= − �2�0p�t� + �F0�t� , �40�

with the pressure F0�t� as a fluctuating force and the dissipa-
tion constant

�0 =



m
�

0

�

dtC0�t� . �41�

Let us now derive a local form for the linear dissipative
term to order �4. Using again the substitution �35�, one can
write the linear term as a local expression plus a correction
term ��t�,

− �2�
0

t

d�M1���p�t − �� = − �2p�t��
0

t

d�M1��� + ��t� .

�42�

The correction has a form
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��t� = �2�
0

t

d�M1����
t−�

t

d��ṗ���� . �43�

Here the essential integration range is of order �c��0, so
that the correction term ���2ṗ��3. Using the linear
Langevin equation �40�, one can write � as follows:

��t� = − �4��p�t� + �3F��t� . �44�

Here the first term −�4��p with

�� = 	 


m

2�

0

�

dtC0�t��
0

�

dtC0�t�t �45�

is a correction to the local linear dissipative force, while the
second term

F��t� =



m
�

0

�

d�C0����
t−�

t

dt�F0�t�� �46�

can be considered as an additional contribution to the fluc-
tuating force. The above expressions for �� and F��t� are
valid for time scale t��c. One can show that in this case
F��t� is a stationary process. Note that the contribution F��t�
was overlooked in �20�.

The result �44� may also be obtained in a more direct way
expanding p�t−�� about t,

�2�
0

t

d�M1���p�t − �� = �2p�t��
0

t

d�M1���

− �2ṗ�t��
0

t

d�M1����

+
1

2!
�2p̈�t��

0

t

d�M1����2 + ¯ .

�47�

To evaluate this expression to order �4, one needs derivatives
p�n��t� to order �2. The first derivative is given by the linear
Langevin equation �40�, while for derivatives of higher order
Eq. �40� gives p�n��t�=�F0

�n−1��t�+O��3�. Then the above ex-
pansion can be transformed into the form �42� with the fluc-
tuating term

�3F��t� = �3�
0

t

d�M1����F0�t�� −
1

2!
Ḟ0�t��2 + ¯ � .

�48�

Recalling that M1�t�= 

mC0�t�+O��2� and noticing that

F0�t�� −
1

2!
Ḟ0�t��2 + ¯ = �

0

�

dt�F0�t − t�� = �
t−�

t

dt�F0�t�� ,

�49�

one recovers F��t� in the form �46�.
The above results allow us to write the Langevin equation

to order �4 in a local form as follows:

dp�t�
dt

= − �2�1p�t� − �4�2p3�t� − ���t� . �50�

Here the fluctuating force is

��t� = F0�t� + �F1�t� + �2F2�t� + �2F��t� �51�

and the dissipation coefficients are

�1 = �0 + �2�� + �2��,

�0 =



m
�

0

�

dtC0�t� ,

�� = −
2

m2�
0

�

dtC1�t� +



m2�
0

�

dtC2�t� ,

�� = 	 


m

2�

0

�

dtC0�t��
0

�

dtC0�t�t ,

�2 =



m3�
0

�

dtC1�t� . �52�

Recall that the correlation functions Ci�t� are defined by Eqs.
�28�.

IV. FROM LANGEVIN TO FOKKER-PLANCK

The aim of this section is to construct a Fokker-Planck
equation for the distribution function f�p , t� corresponding to
the Langevin equation �50�. We shall mostly follow the stan-
dard procedure �1�, but without conventional assumption that
the fluctuating force is �-correlated.

The first step is to assume that f�p , t� obeys a Markovian
master equation,

� f�p,t�
�t

=� dp��f�p�,t�w�p� → p� − f�p,t�w�p → p��� .

�53�

Expressing the transition rates w�p1→p2� as a function of
the initial state p1 and the transition length �p= p2− p1,
w�p1→p2�=w�p1 ��p�, the master equation can be written in
the form

� f�p,t�
�t

=� d��p��f�p − �p,t�w�p − �p��p�

− f�p,t�w�p��p��

=� d��p����p − �p,�p� − ��p,�p�� , �54�

where ��p ,�p�= f�p , t�w�p ��p�. Next, the expansion

��p − �p,�p� = ��p,�p� + �
n=1

�
1

n!
	− �p

�

�p

n

��p,�p�

�55�

transforms the master equation into the Kramers-Moyal form
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� f�p,t�
�t

= �
n=1

�
1

n!
	−

�

�p

n

��n�p�f�p,t�� �56�

with coefficients �n given by

�n�p� =� d��p���p�nw�p��p� . �57�

Since transition rates w are usually unknown, it is more
convenient to work with another representation for �n.
Namely, expressing w in terms of the transition probability
T�p , t � p� , t+��,

w�p → p�� = lim
�→0

1

�
T�p,t�p�,t + �� , �58�

one can write the expression �57� for �n in the form

�n�V� = lim
�→0

1

�
� dp��p� − p�nT�p,t�p�,t + ��

or

�n�p� = lim
�→0

1

�
��p�t + �� − p�t��n� . �59�

This expression may be evaluated integrating the Langevin
equation for p�t�, but this step needs care. Recall that the
Langevin equation �50� corresponds to a coarse-grained de-
scription with a time resolution much longer than correlation
time of the random force �c but much shorter than the char-
acteristic time for the relaxation of the particle’s momentum
�p. Then in the above expressions the limit �→0 should be
understood as �c����p. The moments ��p�t+��− p����n� in
Eq. �59� must first be evaluated in the limit ���c, and only
after that the formal operation lim�→0

1
� �¯� must be applied,

�n�p� = lim
�→0

1

� � lim
���c

��p�t + �� − p�t��n�� . �60�

In what follows, the coarse-grained limit ���c will not be
indicated for brevity.

Integrating the Langevin equation �50� for �c����p,

p�t + �� − p�t� � − ��2�1p�t� + �4�2p3�t��� + ��
t

t+�

dt���t�� ,

�61�

and recalling that ��t� is a stationary process for t��c, one
obtains from Eq. �60�

�1 = − �2�1p − �4�2p3,

�2 = �2lim
�→0

1

�
�

0

�

dt1�
0

�

dt2���t1���t2�� ,

�3 = �3lim
�→0

1

�
�

0

�

dt1�
0

�

dt2�
0

�

dt3���t1���t2���t3�� ,

�4 = �4lim
�→0

1

�
�

0

�

dt1�
0

�

dt2�
0

�

dt3�
0

�

dt4���t1���t2���t3���t4�� .

�62�

In these expressions, the integrals must be taken in the
coarse-grained limit ���c.

The next step is to substitute in these expressions the fluc-
tuating force �=F0+�F1+�2F2+�2F� retaining enough
terms to get �n to order �4. According to Eq. �62�, the ex-
pression for �2 requires the correlation ���� to order �2,

���t1���t2�� = �F0�t1�F0�t2�� + �2�F1�t1�F1�t2��

+ �2�F0�t1�F0
��t2�� + �2�F0�t2�F0

��t1��

+ �2�F0�t1�F2�t2�� + �2�F0�t2�F2�t1�� ,

�63�

�3 requires the correlation ����� to order �,

���t1���t2���t3�� = ��F0�t1�F0�t2�F1�t3��

+ ��F0�t1�F1�t2�F0�t3��

+ ��F1�t1�F0�t2�F0�t3�� , �64�

and �4 requires the correlation to order �0,

���t1���t2���t3���t4�� = �F0�t1�F0�t2�F0�t3�F0�t4�� . �65�

To extract the dependence on p, one has to express F1 and F2
in terms of p-independent functions Gi�t�, see Eq. �23�. Then
the correlation functions take the forms

���t1���t2�� = C0�t1,t2� + �2m−1�C2�t1,t2� + C2�t2,t1��

+ �2	 p

m

2

�C1�t1,t2� + C1�t2,t1� + C3�t2,t1��

+ �2 


m
�C6�t1,t2� + C6�t2,t1�� ,

���t1���t2���t3�� = �
p

m
�C4�t1,t2,t3� + C4�t1,t3,t2�

+ C4�t3,t2,t1�� ,

���t1���t2���t3���t4�� = C0�t1,t2�C0�t3,t4� + C0�t1,t3�C0�t2,t4�

+ C0�t1,t4�C0�t2,t3� + C5�t1,t2,t3,t4� .

�66�

Here the functions Ci are defined as follows:

C0�t1,t2� = ��G0�t1�G0�t2��� ,

C1�t1,t2� = �
0

t2

dt��
0

t�
dt���G0�t1�G2�t2,t�,t���� ,

C2�t1,t2� = �
0

t2

dt��
0

t�
dt���G0�t1�G0�t2 − t��G1�t2,t���� ,

C3�t1,t2� = �
0

t1

dt��
0

t2

dt���G1�t1,t��G1�t2,t���� ,
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C4�t1,t2,t3� = �
0

t3

dt���G0�t1�G0�t2�G1�t3,t���� ,

C5�t1,t2,t3,t4� = ��G0�t1�G0�t2�G0�t3�G0�t4��� ,

C6�t1,t2� = �
0

t2

dt�C0�t���
t2−t�

t2

dt�C0�t1,t�� . �67�

Note that the two-variable function C0�t1 , t2�
= ��G0�t1�G0�t2��� defined above, and the single-variable
function C0�t�= ��G0�0�G0�t���, which we used in the previ-
ous sections, are related as C0�t1 , t2�=C0��t1− t2 � �.

Substitution of correlations �66� into Eq. �62� leads to the
following results:

�1 = − �2�1p − �4�2p3,

�2 = �2�3 + �4	 p

m

2

�4 + �4 1

m
�5 + �4 


m
�6,

�3 = �4 p

m
�7,

�4 = �4�8. �68�

Here the dissipation coefficients �1 and �2, are defined above
by Eqs. �52�,

�3 = lim
�→0

1

�
�

0

�

dt1�
0

�

dt2C0�t1,t2� ,

�4 = lim
�→0

1

�
�

0

�

dt1�
0

�

dt2�2C1�t1,t2� + C3�t1,t2�� ,

�5 = lim
�→0

1

�
�

0

�

dt1�
0

�

dt22C2�t1,t2� ,

�6 = lim
�→0

1

�
�

0

�

dt1�
0

�

dt22C6�t1,t2� ,

�7 = lim
�→0

1

�
�

0

�

dt1�
0

�

dt2�
0

�

dt33C4�t1,t2,t3� ,

�8 = lim
�→0

1

�
�

0

�

dt1�
0

�

dt2�
0

�

dt3�
0

�

dt4C5�t1,t2,t3,t4� . �69�

Recall again that in these formulas the integrals must be
evaluated in the coarse-grained limit ���c.

Note that in the formula for �8 we have discarded the
terms involving the products of cumulants, such as
��F0�t1�F0�t2�����F0�t3�F0�t4���. Such products depend on
two time differences, and the corresponding contributions to
the four-dimensional time integral in the expression for �4
are quadratic in �. They therefore vanish when the operation
lim�→0

1
� �¯� is applied.

V. GENERALIZED FOKKER-PLANCK EQUATION

Substituting the results �68� for �n into the Kramers-
Moyal expansion �56�, one arrives at the Fokker-Planck
equation of order �4 in the following form:

� f�p,t�
�t

= ��2D2 + �4D4 + �4D2
��f�p,t� . �70�

Here the differential operators D2 and D4 have the same
structure as for the van Kampen equation �6�,

D2 = a1
�

�p
p + a2

�2

�p2 , �71�

D4 = b1
�

�p
p + b2

�

�p
p3 + b3

�2

�p2 + b4
�2

�p2 p2 + b5
�3

�p3 p + b6
�4

�p4 .

�72�

The difference with the van Kampen equation is the presence
of the operator D2

�, originating from non-Markovian correc-
tions �� and F�. It has the same structure as D2,

D2
� = c1

�

�p
p + c2

�2

�p2 , �73�

but as we shall see, scales differently with the bath density n.
For the operator D2, the coefficients are a1=�0 and a2

= 1
2�3,

a1 =



m
�

0

�

dtC0�t� ,

a2 =
1

2�
�

0

�

dt1�
0

�

dt2C0�t1,t2� . �74�

The expression for a2 may be simplified recalling that
C0�t1 , t2�=C0��t1− t2 � � and using the coarse-grained limit �
��c,

a2 =
1

�
�

0

�

dt2�
0

t2

dt1C0�t1,t2�

=
1

�
�

0

�

dt2�� − t2�C0�t2� → �
0

�

dtC0�t� . �75�

This gives the conventional relation

a1

a2
=




m
, �76�

which guarantees that the Maxwellian distribution fM�p�
=C exp�−
p2 /2m� is stationary for the operator D2:
D2fM�p�=0.

For the operator D4, the coefficients are b1=��, b2=�2,
b3=�4 /2m2, b4=�5 /2m, b5=�7 /3!m, and b6=�8 /4! Using
the results �52� and �69� for �i, one can write the coefficients
bi in terms of correlation functions as follows:

b1 =
2

m2�
0

�

dtC1�t� +



m2�
0

�

dtC2�t� ,
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b2 =



m3�
0

�

dtC1�t� ,

b3 =
1

2m2 lim
�→0

1

�
�

0

�

dt1�
0

�

dt2�2C1�t1,t2� + C3�t1,t2�� ,

b4 =
1

m
lim
�→0

1

�
�

0

�

dt1�
0

�

dt2C2�t1,t2� ,

b5 =
1

2m
lim
�→0

1

�
�

0

�

dt1�
0

�

dt2�
0

�

dt3C4�t1,t2,t3� ,

b6 =
1

4!
lim
�→0

1

�
�

0

�

dt1�
0

�

dt2�
0

�

dt3�
0

�

dt4C5�t1,t2,t3,t4� .

�77�

Here the functions Ci are defined by relations �28� and �67�,
and the integrals must be evaluated in the coarse-grained
limit ���c.

We did not attempt to give a general proof that D4, with
coefficients given above, satisfies the stationary relation
D4fM�p�=0. Instead, in the next section we evaluate coeffi-
cients bi explicitly for the exactly solvable generalized Ray-
leigh model. In this case, D4 is found to be the same as for
the van Kampen equation �6�, and therefore the relation
D4fM�p�=0 is satisfied.

Consider at last the coefficients for the operator D2
�,

c1 = �� = 	 


m

2�

0

�

dtC0�t��
0

�

dtC0�t�t ,

c2 =



2m
�6 =




m
lim
�→0

1

�
�

0

�

dt1�
0

�

dt2C6�t1,t2� . �78�

It is proven in the Appendix that

c1

c2
=




2m
. �79�

Because of the factor 2 in the denominator, the Maxwellian
distribution fM �exp�−
p2 /2m� is not stationary for the op-
erator D2

�, D2
�fM�p��0. The validity of the relation �79� can

be also verified directly, for instance, for C0�t��exp�−t /�c�.
One might hope that keeping terms of even higher orders
would restore Maxwellian equilibrium. However, the distri-
bution fM�p� does not depend on �, which suggests that it
must satisfy each term of the � expansion separately.

Note that coefficients c1 and c2 are quadratic in cumulants
C0�t�= ��F0�t1�F0�t2���, and therefore quadratic in the bath
density, D2

��n2. In contrast, the operators D2 and D4 are
linear in n. Therefore, in the low-density limit D2

� may be
neglected, and the generalized FPE �70� is reduced to the van
Kampen equation �6�. On the other hand, one may expect
that for sufficiently high density of the bath the operator
D4�n may be neglected compared to D2

��n2, which results
in a conventional FPE,

� f�p,t�
�t

= �2�A1
�

�p
p + A2

�2

�p2� f�p,t� , �80�

but with modified coefficients

A1 = a1 + �2c1, A2 = a2 + �2c2. �81�

The stationary solution of this equation is the Maxwellian
distribution exp�−
�p2 /2m� with the inverse temperature


� =
mA1

A2
= m

a1 + �2c1

a2 + �2c2
, �82�

which is smaller than that for the bath, 
. Indeed, recalling
that a1 /a2=
 /m and c1 /c2=
 /2m, one obtains to order �2


�



= 1 − �2 c1

a1
= 1 − �2 


m
�

0

�

dtC0�t�t . �83�

Needless to say, the prediction that the temperature of a
Brownian particle is higher than the temperature of the bath
is in contradiction with basic assumptions of equilibrium sta-
tistical physics and must be subjected to thorough scrutiny. It
might be instructive to consider a specific model.

VI. GENERALIZED RAYLEIGH MODEL

For the generalized Rayleigh model �20� it is possible to
evaluate the coefficients in the nonlinear Langevin equation
�50� and generalized Fokker-Planck equation �70� analyti-
cally. In this model, the bath molecules do not interact with
each other, while the Brownian particle interact with mol-
ecules not through instantaneous collisions, as in the original
Rayleigh model �3–5�, but via a continuous parabolic repul-
sive potential. Namely, when the distance between a mol-
ecule and the particle �xi−X� is larger than a given length R,
the molecule moves freely. But when the molecule enters the
“interaction zone” �xi−X � �R, it experiences a repulsive

parabolic potential 1
2k�xi− X̃�2, where X̃=X−R for a molecule

approaching the particle from the left, and X̃=X+R for a
molecule from the right.

As was shown in �20�, for this model all relevant correla-
tion functions can be evaluated exactly. In particular, the
correlation functions Ci�t�, Eqs. �28�, which determine dissi-
pative coefficients in the nonlinear Langevin equation �50�,
read

C0�t� = ��pT
3m−1�0��t� ,

C1�t� = ��pTm�1��t� ,

C2�t� = − ��pT
3�2��t� . �84�

Here �=
k /m is the inverse collision time, � is the number
of molecules per unit length, pT=
m /
 is the thermal mo-
mentum of a molecule, and dimensionless functions �i�x� are

�0�x� =
2


2	
��	 − x��sin x + �	 − x�cos x� ,

�1�x� =
1


2	
��	 − x�sin3 x ,
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�2�x� =
1


2	
��	 − x��sin3 x + x�	 − x�sin x� , �85�

where ��x� is the Heaviside unit step function. Substitution
of these results into Eqs. �52� gives the dissipative constants
for the nonlinear Langevin equation �50�,

dp�t�
dt

= �2�1p�t� − �4�2p3�t� − ���t� , �86�

in the form

�1 = �0 + �2�� + �2��,

�0 =
�pT

m
�

0

�

dx�0�x� =
8


2	

�pT

m
,

�� = −
�pT

m
�

0

�

dx�2�1�x� + �2�x�� = −
8


2	

�pT

m
,

�� =
�2pT

2

�m2�
0

�

dx�0�x��
0

�

dx�0�x�x = 8
�2pT

2

�m2 ,

�2 =
�

mpT
�

0

�

dx�1�x� =
4

3
2	

�

mpT
. �87�

Consider now the generalized FPE �70�,

� f�p,t�
�t

= ��2D2 + �4D4 + �4D2
��f�p,t� . �88�

The coefficients in the operators Di are determined by corre-
lations �67�. They can be evaluated in the same manner as
the correlations �84�. Then one can show that the operators
D2 and D4 coincide with those for the original Rayleigh
model with instantaneous binary collisions and are given by
Eqs. �5� and �7�, respectively.

The operator D2
� originates from non-Markovian correc-

tions and does not appear in the generalized FPE for the
original Rayleigh model with instantaneous collisions. It has
the form

D2
� = c1

�

�p
p + c2

�2

�p2 �89�

with coefficients

c1 = �� = 8
�2pT

2

�m2 , c2 = 16
�2pT

4

�m2 . �90�

In accord with the general prediction �79�, one observes that
c1 /c2=
 /2m, and therefore the Maxwellian distribution
fM�p�=C exp�−
p2 /2m� is not stationary for the operator,
D2

�fM�p��0.
Recall that D4 and D2

� scale differently with the molecular
density �: D4��, D2

���2. This suggests that for sufficiently
high density, the operator D4 can be dropped. Inspecting Eqs.
�7� and �90�, one finds that the ratio of terms generated by D2

�

to those produced by D4 is of order

N =
�pT

�m
. �91�

This is an important parameter of the problem and has a
meaning of an average number of molecules simultaneously
interacting with the particle. For the case N�1, correspond-
ing to the limit of binary collision, the operator D2

� can be
neglected, and the generalized FPE is reduced to the van
Kampen equation �6�. The opposite limit N�1 corresponds
to multiple collisions. In this case, the operator D2

� is ex-
pected to be more important than D4, and the generalized
FPE to be reduced to the form �80�. As discussed in the
preceding section, this equation has a Maxwellian solution
with the inverse temperature 
� smaller than that for the bath

. The ratio 
� /
 is given by Eq. �83�, which for the given
model takes the form


�



= 1 − 
2	N�2. �92�

We attempted to verify this prediction in a numerical ex-
periment using a simulation setup similar to that described in
detail in �9�. In our simulation, two Poissonian sources of
ingoing molecules are located sufficiently far from the par-
ticle to mimic an infinite thermal bath with a Maxwellian
velocity distribution of molecules. The particle’s position is
initially fixed and the bath is allowed to equilibrate in the
field of the fixed particle for a time teq. Then, at the moment
t=0 the particle is released with an initial velocity V�0�, and
the relaxation of the mean-square velocity �V2�t�� toward its
stationary value is calculated. Figure 1 shows the result for
the mass ratio �2=10−3 and the density of the bath corre-
sponding to N=100. The velocity is in units of the thermal
velocity of bath molecules vT=1 /
m
, so that according to
equilibrium statistical mechanics �V2�t�� should approach the
equilibrium value �2=0.001. Instead, the stationary mean-

0.00098

0.001

0.00102

0.00104

0.00106

0.00108

0.0011

0.00112

0 2 4 6 8 10 12 14

M
ea

n-
sq

ua
re

ve
lo

ci
ty

Time

0.001

0.001002

0.001004

0.001006

4 6 8 10 12 14

FIG. 1. The relaxation of the mean-square velocity of a Brown-
ian particle �V2�t�� for the generalized Rayleigh model. Parameters
of simulations are �2=0.001, N=100, teq=7.5. Time is in units of
the collision time �−1, and velocity is in units of the thermal veloc-
ity of bath molecules vT. Zoomed data shown in the inset suggest
that the stationary value exceeds the Maxwellian average �V2�=�2

=0.001.
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square velocity of the particle appears to be slightly higher.
However, the exceeding is less than 0.1%, which is orders of
magnitude lower than predicted by Eq. �92�. The smallness
of the alleged deviation from the Maxwellian average re-
quires very large number of sampling runs, which in our case
was about 3�107. Also, the result seems to be sensitive to
the value of the integration time step �t. We used the veloc-
ity Verlet algorithm with �t�0.001 in units of the collision
time �−1. Simulations with larger �t show no signs of devia-
tions from Maxwellian statistics.

VII. CONCLUDING REMARKS

In this paper, the Fokker-Planck equation for the Brown-
ian particle is attempted to be derived beyond the lowest
order in the mass ratio �2=m /M. Unlike the approach of van
Kampen and Oppenheim �15�, the projection operator tech-
nique was applied to the equation of motion for the particle,
rather than to the Liouville equation. The results seem both
encouraging and controversial.

On the one hand, the van Kampen equation, originally
designed for the special case of instantaneous collisions, is
recovered from first principles for a low-density bath. There-
fore, in the Markovian limit the method is correct.

On the other hand, it is found that in the general case the
equation contains the additional operator �4D2

� originating
from non-Markovian corrections, which are inevitable for
any model with finite collision time. These corrections are
found to make the stationary solution non-Maxwellian,
D2

�fM�p��0, which is, of course, a very disturbing result.
Brownian motion of a massive particle coupled to an infinite
bath in thermal equilibrium, with the Maxwellian velocity
distribution for bath molecules, is often considered as a clas-
sical example of an ergodic process: all accessible mi-
crostates are equally probable over a long period of time, and
therefore the equilibrium state is the Gibbs canonical en-
semble. To order �2 this anticipation is supported by solu-
tions of both Langevin and Fokker-Planck equations. To or-
der �4, the original Rayleigh model with instantaneous
collisions leads to the van Kampen equation, which also has
the Maxwellian stationary solution. Note that in this last
case, the ergodic behavior cannot be deduced from the cen-
tral limit theorem or the assumption of Gaussian noise im-
posed on the Langevin equation �which predicts the FPE of
second order�. Instead, one can show that the van Kampen
equation is equivalent to a master equation with transition
rates obeying the detailed balance condition �4�. As is well
known, in this case the applicability of Boltzmann-Gibbs sta-
tistics can be readily proved �2�. However, whether the de-
tailed balance holds in the general case is not known, and a
truly dynamical justification of Boltzmann-Gibbs statistics
still seems to be missing �23�. A number of generalizations of
Boltzmann-Gibbs statistics has been discussed in recent
years, including those derived directly from underlying dy-
namics �see, for instance, �24–26� and references therein�.
However, these generalizations usually imply an essential
departure from basic assumptions of Boltzmann-Gibbs statis-
tical mechanics such as inelastic collisions, nonextensivity,
Lévy statistics for the bath, etc. In contrast, the result

D2
�fM�p��0 originates merely from finite duration of colli-

sions, which suggests deviations from Boltzmann-Gibbs sta-
tistics under a much wider range of conditions.

This radical prediction is in contradiction with the results
of van Kampen and Oppenheim �15�. They obtained a gen-
eralized FPE in which the operator D2

� �in our notations� has
the form of D2 squared, and therefore the stationary solution
is Maxwellian. This casts some scepticism about the ability
of the perturbation approach exploited in this paper to treat
non-Markovian effects. The method is based on the seem-
ingly straightforward assumption of wide separation of time
scales for the particle’s momentum �p��−2 and for correla-
tion functions of the fluctuating force �c��0. However, for a
finite �, the relation �p��c is not necessarily true, even if the
coupling with slow bath’s collective modes is negligible
�14�. On the other hand, the van Kampen–Oppenheim ap-
proach also relies on the assumption �p��c, and it is not
clear why the two approaches give different results. Numeri-
cal simulations of the generalized Rayleigh model apparently
suggest some deviation from the Maxwellian statistics, but
much smaller than the theory predicts. It should be stressed,
however, that the presented theory is asymptotic and implies
the weak-coupling limit, which is difficult to approach in a
numerical experiment. One may hope that further, more ac-
curate numerical modeling would shed some light on these
questions.
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APPENDIX

In this appendix, we prove the relation �79�: c1 /c2
=
 /2m. Using the definition of c1 and c2, Eq. �78�, the rela-
tion can be written in the form

�
0

�

dt1�
0

�

dt2C6�t1,t2� →
���c

2��
0

�

dtC0�t��
0

�

dttC0�t�

�A1�

or taking the derivative

�
0

�

dtC6�t,�� + �
0

�

dtC6��,t� →
���c

2�
0

�

dtC0�t��
0

�

dttC0�t� .

�A2�

Asymptotic relations �A1� and �A2� are equivalent but the
latter is easier to prove. Let us evaluate two integrals on the
left-hand side of the relation �A2�.

Consider the first integral I1=�0
�dtC6�t ,��. Recalling the

definition of C6,

C6�t1,t2� = �
0

t2

dt�C0�t���
t2−t�

t2

dt�C0��t1 − t��� ,

one can write
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I1 = �
0

�

dt�
0

�

dt�C0�t���
�−t�

�

dt�C0��t − t���

= �
0

�

dt�C0�t��

��
�−t�

�

dt���
0

t�
dtC0�t� − t� + �

t�

�

dtC0�t − t���
= �

0

�

dt�C0�t���
�−t�

�

dt��
0

t�
dt�C0�t��

+ �
0

�

dt�C0�t���
�−t�

�

dt��
0

�−t�
dt�C0�t�� .

Introducing the function

��t� = �
0

t

dt�C0�t�� ,

the above expression can be written as follows:

I1 = �
0

�

dt�C0�t���
�−t�

�

dt���t�� + �
0

�

dt�C0�t���
0

t�
dt���t�� .

Noticing that ���t�=C0�t�, it is convenient to integrate the
last term by parts,

I1 = �
0

�

dt�C0�t���
�−t�

�

dt���t�� + �����
0

�

dt��t�

− �
0

�

dt�2�t� . �A3�

Consider now the second integral on the left-hand side of
Eq. �A2�,

I2 = �
0

�

dtC6��,t� = �
0

�

dt�
0

t

dt�C0�t���
t−t�

t

dt�C0��� − t��� .

Since t�� t��, the symbol of absolute value may be omit-
ted, and a change of variables gives

I2 = �
0

�

dt��
t�

�

dt�C0�t� − t���
t�

t�
dt�C0�t��

= − �
0

�

dt�t�
d

dt�
�

t�

�

dt�C0�t� − t���
t�

t�
dt�C0�t�� .

Evaluation of the derivatives gives

I2 = �
0

�

dt�t�C0�� − t���
t�

�

dt�C0�t�� + �
0

�

dt�t�C0�t����� − t��

− �
0

�

dt�t��
t�

�

dt�C0�t� − t��C0�t�� .

Integrating by parts, the last term in this expression can be
presented in the form

− �
0

�

dt�t��
t�

�

dt�C0�t� − t��C0�t��

= − �����
0

�

dt���t�� + �
0

�

dt�2�t� ,

so finally for I2 one obtains

I2 = �
0

�

dt�t�C0�� − t���
t�

�

dt�C0�t�� + �
0

�

dttC0�t���� − t�

− �����
0

�

dt��t� + �
0

�

dt�2�t� .

Together with Eq. �A3�, this gives for the left-hand side of
relation �A2�

I1 + I2 = �
0

�

dt�t�C0�� − t���
t�

�

dt�C0�t��

+ �
0

�

dt�C0�t���
�−t�

�

dt���t�� + �
0

�

dttC0�t���� − t� .

In the limit ���c, the first term in this expression vanishes,
while the second and the third terms both equal
�����0

�dttC0�t�,

I1 + I2 →
���c

2�����
0

�

dttC0�t� . �A4�

But this is just the right-hand side of the relation �A2�, which
is thus proved.
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